A Simple Method to Eliminate Linearly Dependent AO Integrals in ab initio LCAO MO Calculations by Taking Advantage of Shell Structure

ToshikazU Takada*
Department of Chemistry, Faculty of Science,
Hokkaido University. Sapporo 060. Japan

Received September 19. 1980

Abstract

A new method to eliminate linearly dependent two electron integrals in an AO basis is proposed. In the conventional method, the number of computer operations to make the !ist of independent integrals is proportional to the number of two electron integrals. It is proportional to the number of overlap charges in the present method. Thus, the computer time required is negligible in comparison with the conventional method. Results of actual computations using the present method are reported for naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$, cyclobutane ($\mathrm{C}_{4} \mathrm{H}_{8}$) and NiF_{6}.

1. Introduction

Recently, ab initio LCAO MO calculations have been carried out on many molecules of medium size using modern computers. However, the treatment of two electron integrals is still a major problem in so-called large scale calculations. The advantage of evaluating only linearly independent integrals is a substantial saving in computer time and storage space. There are a few computer programs for $a b$ initio LCAO SCF MO calculations which take molecular symmetry into account |1-3|. A program package called JAMOL2 for ab initio LCAO SCF MO calculations has been completed by our research group. JAMOL2 uses the full molecular symmetry to reduce the number of two electron integrals that must be treated. The procedure for computing two electron integrals using symmetry consists of the following three steps: (1) creating a list of independent two electron integrals; (2) generating the integrals; and (3) transforming them to a symmetry orbital (SO) basis. In the course of using JAMOL2, it became apparent that for molecules with high symmetry creating the integral list and transforming them to a SO basis were more time consuming processes than generation. For example, in a CoF_{6} calculation [4], 20 and 64% of the computer time was spent in creating the list and transforming to a SO

[^0]basis, respectively, while only 11% was consumed in generating the integrals. ${ }^{1}$ Therefore, for the sake of economy, it is important to increase the efficiency of the two most time consuming steps. An improved algorithm for transforming the integrals has been previously proposed by Takada and Sasaki [5].

A new algorithm to make the list of linearly independent two electron integrals is described in the present paper. Conventionally, the symmetry operations of the point group are applied to each integral to determine the linearly dependent integrals. Therefore, the number of necessary computer operations is proportional to the number of two electron integrals and it becomes very time consuming to make the list in the case of large scale calculations. In the present method, the number of computer operations required to make the list is only proportional to the number of overlap charges. Thus, the computer time required for the list creation is negligible in comparison with the conventional method. Although some dependent integrals are generated in the present method, the total amount of computer time required for computing the two electron integrals is significantly reduced.

Many improvements have been completed on JAMOL2, including implementation of the present algorithm. The new version is called JAMOL3 \{6].

In this paper, the algorithm is presented in Section 2 and some results from actual computations are given in Section 3.

2. Algorithm

When contracted Gaussian type orbitals (CGTOs) are used as basis functions, the evaluation of two electron integrals can be carried out very efficiently by introducing shell structure [9]. A shell consists of all CGTOs which have the same orbital exponents and are centered on the same atom. The shells are denoted $s_{i}^{A}, s_{j}^{A}, \ldots, s_{i}^{B}$, $s_{j}^{B}, \ldots, s_{n}^{D}$, where the superscripts indicate on which atom each shell is centered and the subscripts indicate the type of shell. For example, in the case of a minimal basis set for a carbon atom, the shells are $s_{1}^{c}=\left\{\chi_{1 s}\right\}, s_{2}^{C}=\left\{\chi_{2 s}\right\}, s_{3}^{C}=\left\{\chi_{2 p_{x}}, \chi_{2 p_{p}}, \chi_{2 p_{z}}\right\}$ when different orbital exponents are used for $2 s$ and $2 p$ orbitals.

Now we show how molecular symmetry can be applied to the shell structure to eliminate most of the dependent two electron integrals. When the molecule has symmetry, equivalent atoms in the molecule can be determined by applying the symmetry operations of the point group. We define new shells S_{I}, S_{J}, S_{K} and S_{I}, called extended shells, as follows: the extended shell S_{I} consists of all shells which are equivalent by symmetry. In other words, shells of the same type on equivalent atoms form an extended shell, for example, $S_{I}=\left\{s_{2}^{C 1}, s_{2}^{C 2}, s_{2}^{C 3}, s_{2}^{C 4}\right\}$, where carbon atoms $C 1$, $C 2, C 3$ and $C 4$ can be transformed into one another by appropriate symmetry operations of the point group.

[^1]The handling of two electron AO integrals is simplified by arranging them in extended shell blocks $\left(S_{I} S_{J} \mid S_{K} S_{L}\right)$. The advantage of this arrangement is that list creation, integral generation and transformation to a SO basis can be carried out for each block independently of the others.

For an integral block $\left(S_{I} S_{J}!S_{K} S_{L}\right)$, list creation involves the following two steps: (1) eliminating dependent two electron integrals and (2) determining which integrals are zero by symmetry. This is accomplished by (1) creating two lists of overiap charges, corresponding to each of the $\left(S_{I} S_{J} \mid\right.$ and $\left.S_{K} S_{L}\right)$ sets and (2) forming bit patterns for individual overlap charges, which indicate if an AO integral given by combining the two overlap charges is zero by molecular symmetry.

First, a list of the independent overlap charges included in the ($S_{i} S_{j}$) set is made. To make the list, one of the shells, for example, s_{i}^{A}. is arbitrarily selected from the extended shell $S_{1}=\left\{s_{i}^{A^{1}}, s_{i}^{A^{\prime}}, s_{i}^{A^{\prime \prime}}, \ldots, s_{i}^{A^{\prime \prime \prime \prime}}\right\}$ and combinations are formed with al! the shells included in the extended shell S_{J}, i.e., $\left(s_{i}^{A} s_{j}^{E^{i}},\left(s_{i}^{A} s_{j}^{B^{3}}\right) \ldots . .\left(s_{i}^{A} s_{j}^{s^{\prime \prime \prime \prime \prime}}\right.\right.$. If some dependent overlap charges are included in the list, they are deleted by applying symmetry operations. Next, a list is made for the $\left\{S_{K} S_{i}\right)$ set. This list is constructed

Fig. 1. Flowchart of program. (a) Preparation for integral generation. The integral evaluation program was written by F. Sasaki [8] and is incorporated in JAMOL3 [6]. (**) TEI: two eleciron integral. ($* * *$) An equivalent orbital group consists of the atomic orbitals which are transformed into one another by symmetry operations.
differently from the $\left(S_{I} S_{J} \mid\right.$ list in that it contains all combinations of pairs of shells including dependent ones. The overlap charge lists are stored on disk and are later combined in the integral generation step to determine which integrals must be evaluated. Thus, with the present algorithm, the necessity of storing an integral list is avoided.

Next, the following procedure can be used to determine which integrals are zero by symmetry so as to avoid computing them. Each symmetry adapted overlap charge corresponds to a particular irreducible representation of the point group and consists of a linear combination of AO overlap charges $\chi_{r} \chi_{s}$. Each AO overlap charge will contribute to one or more symmetry adapted overlap charges. The information can be stored in the computer as a bit pattern. For example, in $\mathrm{H}_{2} \mathrm{O}$, an overlap charge of the type $\chi_{1 s_{H 1}} \chi_{1 s_{H 1}}$ contributes to two symmetry adapted overlap charges which belong

Fig. 1. (b) Integral generation for block ($S_{t} S_{J} \mid S_{K} S_{l}$).
to the A_{1} and B_{2} irreducible representrations of the $C_{2 v}$ point group. Therefore, the bit pattern for the overlap charge $\chi_{1 s_{H 1}} \chi_{1 s_{H 1}}$ is

$$
\begin{array}{lllll}
& A_{1} & A_{2} & B_{1} & B_{2} \\
\chi_{1 s_{H 1}} \chi_{1 s_{H 1}} & 1 & 0 & 0 & 1
\end{array}
$$

That is, a bit corresponds to each irreducible representation. If a given bit is on, the AO overlap charge contributes to the symmetry adapted overlap charge belonging to the corresponding irreducible representation. The value of the integral $\left(\chi_{r} \chi_{s} \mid \chi_{i} \chi_{1}\right)$ is zero unless the bit patterns for the two overlap charges $\chi_{r} \chi_{s}$ and $\chi_{t} \chi_{u}$ have at least one pair of corresponding bit positions turned on. To check whether the integral vanishes or not, the logical operation •AND. is taken between the two bit patterns in the integral generation step. If the result of the logical operation is false, the value of the integral is zero and the integral is not calculated.

In Fig. 1, a simplified flowchart of the program implementing the present algorithm is shown. It should be noted that the first three steps depend only on overlap charges and therefore the number of computer operations is proportional to the number of overlap charges, not to the number of two electron integrals. The test using the logical operation. AND is repeated as many times as there are numbers of two electron integrals. However, since the logical operation is very fast, the CPU time required is negligible.

The three steps of list creation, generation and transformation are carried out for each integra! block $\left(S_{I} S_{J} \mid S_{K} S_{L}\right)$ for all combinations of I, J, K and L. After completion of the transformation step for a given block, the resulting SO integrals are output to disk or magnetic tape. Therefore, the necessary core is twice the core needed for storing the independent $A O$ integrals, since sorting them into equivalent

Fig. 1. (c) Transformation to a SO basis.

TABLE I
Number of Two Electron Integrals

Molecules	Symmetry	Number of orbitals	Number of TEIs ${ }^{a}$	Number of independent TEIs ${ }^{a}$	Ratio
CH_{2}	$C_{2 k}(4)^{b}$	$15^{\text {c }}$	7,260	2,584	0.36
$\mathrm{C}_{4} \mathrm{H}_{8}$	$D_{4 n}$ (16)	56	1,274,406	86.800	0.068
$\mathrm{C}_{10} \mathrm{H}_{8}$	$D_{2 h}(8)$	58	1,464,616	219,484	0.15
				$(102,600)^{d}$	(0.070)
NiF_{6}	$O_{h}(48)$	61	1,788,886	46,490	0.026
CoF_{6}	$O_{h}(48)$	128	34,084,896	820,567	0.024
Cu -porphine	$D_{4 h}(16)$	178	126,906,346	9,633,076	0.076
				(904,080)	(0.007)
Co-porphine	$D_{4 h}(16)$	187	154,501,831	10.096.264	0.065
				(2,284,595)	(0.015)

[^2]orbital groups is needed in the present method as shown in Fig. 1. In the present method, the core memory requirement is largest in the case of the O_{h} point group because there are six equivalent ligand atoms. In this case, the largest extended shell consists of $3 d$ orbitals on the ligand atoms and the number of independent overlap charges is $76 .{ }^{2}$ Therefore, the core size for real applications is estimated not to exceed 1.6 Mbyte. Most modern computers have adequate core memory to permit the above procedures to be carried out in core without the necessity of creating temporary files.

3. Results

The number of linearly independent two electron integrals is shown for several molecules in Table I. It is apparent that in each case the number of independent integrals is roughly equal to the number of two electron integrals divided by the number of symmetry operations in the point group. Therefore, even in the case of lower symmetry, the use of molecular symmetry allows a considerable reduction in computer time and storage space.

In Table II, the number of two electron integrals that must be evaluated as

[^3]TABLE II
Number of Two Electron Integrais

	Molecules		
	$\mathrm{C}_{10} \mathrm{H}_{5}{ }^{\text {a }}$	$\mathrm{C}_{4} \mathrm{H}_{3}$	NiF,"
Numbe: of CGTOs	58	56	61
Symmetry	$D_{2 h}$	$D_{\text {an }}$	O,
Number of two electron integrals			
1. No consideration of symmetry	1,464.616	1.274,406	1.788 .885
2. Full consideration of symmetry	102,600	86,800	45.490
3. Symmetry operations on overlap charges	198.015	140,748	153,418
4. Symmetry operations on overlap charges and zero check	114.095	117.436	142,622
Ratio (4./2.)	1.11	1.35	3.07

${ }^{a}$ An integral approximation based on semiorthogonalized orbitals is adopted. See Ref. [10].
${ }^{3}$ Sce Ref. \{i3\}.
obtained by the present method is shown for $\mathrm{C}_{4} \mathrm{H}_{8}, \mathrm{C}_{10} \mathrm{H}_{8}$ and NiF_{6}. The numbers in the third row were obtained without testing for integrals that are zero by symmetry. The present method reduces the number of integrals to almost that of the independent integrals obtained by full consideration of molecular symmetry. The check for zero integrals leads to a relatively small but significant reduction in the number of integrals to be calculated. Since $\mathrm{C}_{10} \mathrm{H}_{8}$ is a planar molecule and integrals of type $(\sigma \sigma \mid \sigma \pi)$ and $(\sigma \pi \mid \pi \pi)$ are zero, the test for zero integrals is particularly effective in reducing the number of integrals for this molecule. The reason why the ratio is largest for NiF_{6} in spite of its having the highest symmetry can be explained in the following way. The number of equivalent AOs on the Ni atom is only 3 . In the NiF_{6} calculation, the number of extended shells on Ni and F atoms is 9 and 4 , respectively. The probability that either S_{I} and/or S_{J} is an extended shell on the Ni atom in all the ($S_{I} S_{J} \mid$ combinations, is 89%. Therefore, the present method does not do as well in reducing the number of dependent integrals in the NiF_{6} calculation. Nevertheless, the reduction seems to be adequate because the number of integrals obtained by this method is about $1 / 13$ th of the total number. The ratio will be much smaller in the case of complexes such as $\mathrm{Co}(\mathrm{CN})_{6}$, because the number of AOs on the ligand atoms increases in comparison with the number of $A O$ s on the central metal.

The present approach outlined to determine the independent overlap charges in ($S_{I} S_{J} \mid$ is identical to the method proposed by Dupuis and King $|3|$. In their method, further redundancies related to overlap charges in $\left.\mid S_{K} S_{L}\right)$ are eliminated, while the present method uses all the overlap charges. As mentioned above, this creates the higher ratio for NiF_{6} in Table II. However, from the other two ratios, the $S_{K} S_{L}$) redundancies are almost eliminated even with this method. The present algorithm was

TABLE III
Computer Time by JAMOL2 and JMAOL3 (sec)

	Molecules	JAMOL2	JAMOL3	Ratio
List creation	$\mathrm{C}_{4} \mathrm{H}_{8}$	90	-	
	$\mathrm{C}_{10} \mathrm{H}_{8}$	32	-	
	NiF_{6}	132		
Generation of TEIs	$\mathrm{C}_{4} \mathrm{H}_{8}$	156	$38(1.35)^{b}$	5.5^{c}
in AO basis ${ }^{\text {a }}$	$\mathrm{C}_{10} \mathrm{H}_{8}$	1573	$563(1.11)$	3.1
	NiF_{6}	167	$231(3.07)$	2.2
Total	$\mathrm{C}_{4} \mathrm{H}_{8}$	246	38	
	$\mathrm{C}_{10} \mathrm{H}_{8}$	1605	563	6.5
	NiF_{6}	299	231	2.9

[^4]designed to make a good interface with a transformation algorithm from an AO basis set to a SO basis set [5], and the Dupuis and King method and the present one are two different approaches in ab initio calculations to take advantage of molecular symmetry.

In Table III, the computer time for these calculations is shown. The integral evaluation program in JAMOL2, which was written by Sasaki, does not take advantage of shell structure [7]. With the use of shell structure and many additional improvements on the program, integral evaluation is much faster with JAMOL3 [8].

The present method has the following advantages.

1. The number of computer operations needed for list creation is only proportional to the number of overlap charges, not to the number of two electron integrals. Therefore, the computer time required is negligible in comparison with the conventional method. Even though some dependent integrals are evaluated, much computer time is saved in large scale calculations.
2. This algorithm can be easily used in conjunction with integral approximations such as those based on semiorthogonalized orbitals $[14,15]$. In this approximation scheme, overlap charges are divided into two groups, strongly related pairs and weakly related pairs. If either of the overlap charges $\chi_{r} \chi_{s}$ and $\chi_{1} \chi_{u}$ in an integral $\left(\chi_{r} \chi_{s} \mid \chi_{t} \chi_{u}\right)$ is a weakly related pair, the integral is ignored. Thus, any overlap charge which is a weakly related pair can be omitted from the $\left(S_{I} S_{J} \mid\right.$ and $\mid S_{K} S_{I}$) lists.

By using the present algorithm and the improved integral transformation algorithm
to a SO basis set, the efficiency gained by exploiting molecular symmetry is significantly increased in large scale calculations especially for metal complexes such as metallo-porphine.

Acknowledgments

The author wishes to thank Professor K. Ohno, Professor H. Kashiwagi and Dr. G. D. Zeiss for reading and commenting on this paper, and especially Professor F. Sasaki for valuable advice during development of the computer program. The calculations in this paper have been carried out on the FACOM 230-75 at the Hokkaido University Computing Center.

References

1. POLYATOM (version 2) QCPE No. 199.
2. J. Almölf. Int. J. Quantum Chem. 8 (1974), 915.
3. M. Duplis and H. King, Int. J. Quantum Chem. 11 (1977), 613.
4. E. Miyoshi, T. Takada, S. Obara, H. Kashiwagl, and K. Ohino, Ini. J. Quantum Chem. 19 (1981), 451.
5. T. Takada and F. Sasaki, Int. J. Quantum Chem. 18 (1980), 1157.
6. H. Kashiwagi, T. Takada, S. Obara, E. Miyoshi, and F. Sasaki, to be published. A library program of the Institute for Molecular Science in Okazaki and the Hokkaido University Computing Center in Sapporo, Japan.
7. F. Sasaki, private communication.
8. F. Sasaki, to be published.
9. W. J. Hehre, R. F. Stewart, and J. A. Popie, J. Chem. Phys. 51 (1969). 2657.
10. H. Kashiwagi and T. Takada, Int. J. Quantum Chem. 12 (1977), 449.
11. S. Obara and H. Kashiwag, to be published.
12. H. Kashiwagi. T. Takada, S. Obara, F. Miyoshi, and K. Ohno. Int. J. Quantum Chem. 14 (1978), 13.
13. The calculation on NiF_{6} by Gladney and Veillard was repeated during debugging of the program. H . M. Giadney and A. Veillakd, Phys. Rel. 180 (1969), 385.
14. H. Kashiwagi and F. Sasaki, Int. J. Quantum Chem. Symp. 7 (1973). 515.
15. H. Kashiwagi, Int. J. Quantum Chem. 10 (1976), 135.

[^0]: * Present address: NRCC Lawrence Berkeley Laboratory, University of California, Berkeley, Calif. 94720 .

[^1]: ${ }^{1}$ These results were obtained with JAMOL2 using an integral generation program written by Sasaki, which does not take advantage of shell structure [7]. This program has now been revised by Sasaki to include shell structure and is incorporated in JAMOL3 [8]. The percentage of the total computer time required for gencration using the new integral program is much less than with the previous version.

[^2]: ${ }^{a}$ TEI; two clectron integral.
 ${ }^{b}$ Number of symmetry operations.
 ${ }^{c}$ The basis sets; minimal basis set for $\mathrm{C}_{10} \mathrm{H}_{8}$, double zeta basis set for $\mathrm{C}_{4} \mathrm{H}_{8}$ and $|4 s 3 p 2 d / 3 s 1 p|$ for NiF_{6}.
 ${ }^{d}$ An integral approximation based on semiorthogonalized orbitals is adopted. Sce Refs. [10-12].

[^3]: ${ }^{2}$ When $3 s, 3 p$ and $3 d$ functions with the same exponents or $4 f$ functions are used for ligand atoms, the number of AOs in an extended shell is large. Thus, more core memory will be required to store the integrals. However, in this case, the extended shell can be divided into smaller groups in such a way as not to break up equivalent orbital groups. The efficiency of integral evaluation is slightly reduced by dividing the extended shell into smaller groups, but the core size required is kept to less than 1.6 Mbyte.

[^4]: ${ }^{a}$ The number of primitive CGTOs is 84,174 and 128 in $\mathrm{C}_{4} \mathrm{H}_{8}, \mathrm{C}_{10} \mathrm{H}_{8}$ and NiF_{6}, respectively.
 ${ }^{n}$ Ratio of the number of two electron integrals to be calculated in JAMOL3 to the number of independent integrals. See Table II.
 ${ }^{c}$ Ratio of CPU time for calculating one integral.

